3.4.2 \(\int \frac {1}{x^{5/2} (a+b x^2)^2} \, dx\) [302]

3.4.2.1 Optimal result
3.4.2.2 Mathematica [A] (verified)
3.4.2.3 Rubi [A] (verified)
3.4.2.4 Maple [A] (verified)
3.4.2.5 Fricas [C] (verification not implemented)
3.4.2.6 Sympy [F(-1)]
3.4.2.7 Maxima [A] (verification not implemented)
3.4.2.8 Giac [A] (verification not implemented)
3.4.2.9 Mupad [B] (verification not implemented)

3.4.2.1 Optimal result

Integrand size = 15, antiderivative size = 230 \[ \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx=-\frac {7}{6 a^2 x^{3/2}}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}+\frac {7 b^{3/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{11/4}}-\frac {7 b^{3/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{11/4}}+\frac {7 b^{3/4} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{11/4}}-\frac {7 b^{3/4} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{11/4}} \]

output
-7/6/a^2/x^(3/2)+1/2/a/x^(3/2)/(b*x^2+a)+7/8*b^(3/4)*arctan(1-b^(1/4)*2^(1 
/2)*x^(1/2)/a^(1/4))/a^(11/4)*2^(1/2)-7/8*b^(3/4)*arctan(1+b^(1/4)*2^(1/2) 
*x^(1/2)/a^(1/4))/a^(11/4)*2^(1/2)+7/16*b^(3/4)*ln(a^(1/2)+x*b^(1/2)-a^(1/ 
4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(11/4)*2^(1/2)-7/16*b^(3/4)*ln(a^(1/2)+x*b^( 
1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(11/4)*2^(1/2)
 
3.4.2.2 Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.60 \[ \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\frac {-\frac {4 a^{3/4} \left (4 a+7 b x^2\right )}{x^{3/2} \left (a+b x^2\right )}+21 \sqrt {2} b^{3/4} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-21 \sqrt {2} b^{3/4} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{24 a^{11/4}} \]

input
Integrate[1/(x^(5/2)*(a + b*x^2)^2),x]
 
output
((-4*a^(3/4)*(4*a + 7*b*x^2))/(x^(3/2)*(a + b*x^2)) + 21*Sqrt[2]*b^(3/4)*A 
rcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] - 21*Sqrt[2 
]*b^(3/4)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)] 
)/(24*a^(11/4))
 
3.4.2.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.13, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.733, Rules used = {253, 264, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {7 \int \frac {1}{x^{5/2} \left (b x^2+a\right )}dx}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {7 \left (-\frac {b \int \frac {1}{\sqrt {x} \left (b x^2+a\right )}dx}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {7 \left (-\frac {2 b \int \frac {1}{b x^2+a}d\sqrt {x}}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{a}-\frac {2}{3 a x^{3/2}}\right )}{4 a}+\frac {1}{2 a x^{3/2} \left (a+b x^2\right )}\)

input
Int[1/(x^(5/2)*(a + b*x^2)^2),x]
 
output
1/(2*a*x^(3/2)*(a + b*x^2)) + (7*(-2/(3*a*x^(3/2)) - (2*b*((-(ArcTan[1 - ( 
Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + 
(Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[a]) 
+ (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(Sqrt[2 
]*a^(1/4)*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[ 
b]*x]/(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[a])))/a))/(4*a)
 

3.4.2.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.2.4 Maple [A] (verified)

Time = 1.81 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.59

method result size
derivativedivides \(-\frac {2 b \left (\frac {\sqrt {x}}{4 b \,x^{2}+4 a}+\frac {7 \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a}\right )}{a^{2}}-\frac {2}{3 a^{2} x^{\frac {3}{2}}}\) \(136\)
default \(-\frac {2 b \left (\frac {\sqrt {x}}{4 b \,x^{2}+4 a}+\frac {7 \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a}\right )}{a^{2}}-\frac {2}{3 a^{2} x^{\frac {3}{2}}}\) \(136\)
risch \(-\frac {2}{3 a^{2} x^{\frac {3}{2}}}-\frac {b \left (\frac {\sqrt {x}}{2 b \,x^{2}+2 a}+\frac {7 \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 a}\right )}{a^{2}}\) \(136\)

input
int(1/x^(5/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
-2*b/a^2*(1/4*x^(1/2)/(b*x^2+a)+7/32*(a/b)^(1/4)/a*2^(1/2)*(ln((x+(a/b)^(1 
/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2 
)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x 
^(1/2)-1)))-2/3/a^2/x^(3/2)
 
3.4.2.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.06 \[ \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx=-\frac {21 \, {\left (a^{2} b x^{4} + a^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} \log \left (7 \, a^{3} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} + 7 \, b \sqrt {x}\right ) + 21 \, {\left (i \, a^{2} b x^{4} + i \, a^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} \log \left (7 i \, a^{3} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} + 7 \, b \sqrt {x}\right ) + 21 \, {\left (-i \, a^{2} b x^{4} - i \, a^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} \log \left (-7 i \, a^{3} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} + 7 \, b \sqrt {x}\right ) - 21 \, {\left (a^{2} b x^{4} + a^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} \log \left (-7 \, a^{3} \left (-\frac {b^{3}}{a^{11}}\right )^{\frac {1}{4}} + 7 \, b \sqrt {x}\right ) + 4 \, {\left (7 \, b x^{2} + 4 \, a\right )} \sqrt {x}}{24 \, {\left (a^{2} b x^{4} + a^{3} x^{2}\right )}} \]

input
integrate(1/x^(5/2)/(b*x^2+a)^2,x, algorithm="fricas")
 
output
-1/24*(21*(a^2*b*x^4 + a^3*x^2)*(-b^3/a^11)^(1/4)*log(7*a^3*(-b^3/a^11)^(1 
/4) + 7*b*sqrt(x)) + 21*(I*a^2*b*x^4 + I*a^3*x^2)*(-b^3/a^11)^(1/4)*log(7* 
I*a^3*(-b^3/a^11)^(1/4) + 7*b*sqrt(x)) + 21*(-I*a^2*b*x^4 - I*a^3*x^2)*(-b 
^3/a^11)^(1/4)*log(-7*I*a^3*(-b^3/a^11)^(1/4) + 7*b*sqrt(x)) - 21*(a^2*b*x 
^4 + a^3*x^2)*(-b^3/a^11)^(1/4)*log(-7*a^3*(-b^3/a^11)^(1/4) + 7*b*sqrt(x) 
) + 4*(7*b*x^2 + 4*a)*sqrt(x))/(a^2*b*x^4 + a^3*x^2)
 
3.4.2.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(1/x**(5/2)/(b*x**2+a)**2,x)
 
output
Timed out
 
3.4.2.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 209, normalized size of antiderivative = 0.91 \[ \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx=-\frac {7 \, b x^{2} + 4 \, a}{6 \, {\left (a^{2} b x^{\frac {7}{2}} + a^{3} x^{\frac {3}{2}}\right )}} - \frac {7 \, {\left (\frac {2 \, \sqrt {2} b \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} b \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} b^{\frac {3}{4}} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}}} - \frac {\sqrt {2} b^{\frac {3}{4}} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}}}\right )}}{16 \, a^{2}} \]

input
integrate(1/x^(5/2)/(b*x^2+a)^2,x, algorithm="maxima")
 
output
-1/6*(7*b*x^2 + 4*a)/(a^2*b*x^(7/2) + a^3*x^(3/2)) - 7/16*(2*sqrt(2)*b*arc 
tan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a) 
*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2)*b*arctan(-1/2*sqrt( 
2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(s 
qrt(a)*sqrt(sqrt(a)*sqrt(b))) + sqrt(2)*b^(3/4)*log(sqrt(2)*a^(1/4)*b^(1/4 
)*sqrt(x) + sqrt(b)*x + sqrt(a))/a^(3/4) - sqrt(2)*b^(3/4)*log(-sqrt(2)*a^ 
(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/a^(3/4))/a^2
 
3.4.2.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.85 \[ \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx=-\frac {7 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3}} - \frac {7 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3}} - \frac {7 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3}} + \frac {7 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3}} - \frac {b \sqrt {x}}{2 \, {\left (b x^{2} + a\right )} a^{2}} - \frac {2}{3 \, a^{2} x^{\frac {3}{2}}} \]

input
integrate(1/x^(5/2)/(b*x^2+a)^2,x, algorithm="giac")
 
output
-7/8*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqr 
t(x))/(a/b)^(1/4))/a^3 - 7/8*sqrt(2)*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)*(sq 
rt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/a^3 - 7/16*sqrt(2)*(a*b^3)^(1/ 
4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/a^3 + 7/16*sqrt(2)*(a* 
b^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/a^3 - 1/2*b*s 
qrt(x)/((b*x^2 + a)*a^2) - 2/3/(a^2*x^(3/2))
 
3.4.2.9 Mupad [B] (verification not implemented)

Time = 5.00 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.33 \[ \int \frac {1}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\frac {7\,{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{4\,a^{11/4}}-\frac {\frac {2}{3\,a}+\frac {7\,b\,x^2}{6\,a^2}}{a\,x^{3/2}+b\,x^{7/2}}+\frac {7\,{\left (-b\right )}^{3/4}\,\mathrm {atanh}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{4\,a^{11/4}} \]

input
int(1/(x^(5/2)*(a + b*x^2)^2),x)
 
output
(7*(-b)^(3/4)*atan(((-b)^(1/4)*x^(1/2))/a^(1/4)))/(4*a^(11/4)) - (2/(3*a) 
+ (7*b*x^2)/(6*a^2))/(a*x^(3/2) + b*x^(7/2)) + (7*(-b)^(3/4)*atanh(((-b)^( 
1/4)*x^(1/2))/a^(1/4)))/(4*a^(11/4))